

DPP - 3 (Circular Motion)

/ideo Solution on Website:-	https://physicsaholics.com/home/courseDetails/39			
ideo Solution on YouTube:-	https://youtu.be/DZt1IUrR71E			
ritten Solution on Website:-	https://physicsaholics.com/note/notesDetalis/42			
	e centripetal force acting on a body of mass m executing uniform radius r with speed v is: (b) mv^2r (d) $\frac{m}{v^2r}$			
	tied to a string of length l and rotated in a circle with a constant is released, the stone flies: (b) Radially inward ard (d)With an acceleration $\frac{mv^2}{l}$			
constant speed. If the				
	g is attached to a string of length 2m and is whirled in a ne string can withstand a tension of 9N the maximum velocity can be whirled is: (b) 8 m/s (d) 12 m/s			
Q 5. A stone of mass 0 .25 1.5 m with a speed of (a) 6.1 N (c) 8.5 N	kg tied to the end of a string is whirled round in a circle of radius 40 rev/min in a horizontal plane What is the tension in the string? (b) 4.2 N (d) 6.7 N			
-	irled in a horizontal circle by means of a string at an initial speed ninute. Keeping the radius constant, the tension in the string is eed is nearly: (b) 10 rpm (d) 7 rpm			
	tension exceeds 10 newtons. A stone of mass 250 gm tied to this is rotated in a horizontal circle. The maximum angular velocity (b) 400 rad/s (d) 200 rad/s			

Physicsaholics

- Q 8. A ball of mass 0.1 Kg. is whirled in a horizontal circle of radius 1 m. by means of a string at an initial speed of 20 R.P.M. Keeping the radius constant, the tension in the string is reduced to one quarter of its initial value. The new speed is:
 - (a) 5 r.p.m.

(b) 10 r.p.m.

(c) 20 r.p.m.

(d) 40 r.p.m.

- Q 9. If the radius of curvature of the path of two particles of mass 2kg and 4kg are in the ratio 1:2, then in order to have constant centripetal force, their velocity, should be in the ratio of
 - (a) 1:1

(b) 1:2

(c) 2:1

(d) 1:4

- Q 10. In an atom for the electron to revolve around the nucleus, the necessary centripetal force is obtained from the following force exerted by the nucleus on the electron:
 - (a) Nuclear force
 - (b) Normal reaction force
 - (c) Magnetic force
 - (d) Electrostatic force
- Q 11. Two bodies of equal masses revolve in circular orbits of radii R_1 and R_2 with the same period. Their centripetal forces are in the ratio:
 - (a) $\left(\frac{R_1}{R_2}\right)^2$
- (b) $\left(\frac{R_2}{R_2}\right)$
- $(c)\frac{R_1}{R}$
- (d) $\sqrt{R_1R_2}$
- Q 12. Centrifugal force is pseudo force because:
 - (a) its magnitude is equal to centripetal force
 - (b) origin cannot be imaginary
 - (c) its direction is outward along radius
 - (d) it is not provided by any real force but it arises due to accelerated frame of reference

Answer Key

Q.1 c	Q.2 c	Q.3 b	Q.4 a	Q.5 d
Q.6 d	Q.7 a	Q.8 b	Q.9 a	Q.10 d
Q.11 c	Q.12 d			